

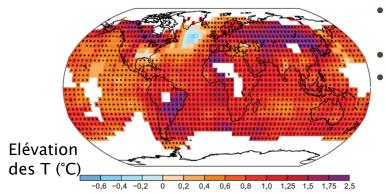
L'imagerie drone : que peut-on caractériser sur les variétés fruitières au champ?

Jean-Luc REGNARD, David GÓMEZ-CANDÓN, Magalie DELALANDE UMR AGAP – équipe AFEF Montpellier SupAgro – INRA

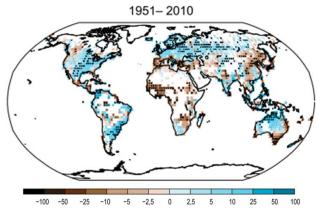
L'imagerie végétale et ses applications

- Un domaine scientifique émergent :
 - caractérisation et quantification de variables de croissance et de fct^t du végétal,
 - diagnostic (précis et reproductible) des stress
- Compétences interdisciplinaires, car large gamme d'outils et de méthodologies :
 - Imagerie aéroportée haute-résolution,
 - Pré- et post-traitement des images (nécessité d'automatisation),
 - Gestion et interprétation des données,
 - Création de bases de données,
 - Aide à la décision.
- Imagerie haute résolution applicable au champ sur arbres fruitiers (cond. environmentales réelles)
- Moyen à haut-débit : dépassement des limites des méthodes traditionnelles (chronophages)
- Nécessaire évaluation de la sensibilité & fiabilité, de la flexibilité et du rapport coût / efficacité
- ✓ Applications en sélection végétale → phénotypage, Lien phénotype / génotype → dissection du contrôle génétique des traits ("Phénomique") (White et al., 2012; Fiorani & Schurr, 2013; Prashar & Jones, 2014)
- ✓ Application pour le diagnostic et la prise de décision en agriculture

Phénotypage et imagerie thermique



Réponse du pommier au déficit hydrique : imagerie multispectrale et thermique


- Echauffement du feuillage en réponse à l'arrêt / à la limitation / de la transpiration
- L'imagerie thermique utilisée en tant qu'outil de diagnostic
 - Pour le monitoring du stress hydrique au champ (e.g. Grant et al., 2006 ; vigne)
 - Pour la gestion de l'irrigation (e.g. Jones et al., 2004)
- Phénotypage au champ de la transpiration (Jones et al., 2009; Prashar & Jones, 2014)
 - Indices de stress issus de l'analyse des images, corrélations avec les variables plante
 - Importance de tester la sensibilité : en lien avec l'intensité du stress, et les ≠ génotypes
 - Difficultés méthodologiques: not^t faible résolution et pixels mixtes (Jones & Sirault, 2014)
- Les technologies de vecteur évoluent rapidement : notamment en aéroporté
 - Solutions ULM (Zarco-Tejada et al., 2009)
 - Solutions Drone (UAV) → résolution spatiale (RGB + NIR) et la flexibilité (Berni et al., 2009)

Contexte : changement climatique et cas du pommier

- ¬ pluies (zone médit. : hotspot)

Variation (mm par an, par période de 10 ans)

- Réduction des ressources en eau pour l'agriculture, restriction possibles en cas de crise (cf. site Propluvia)
- Enjeu de durabilité pour ≠ cultures, dont fruitières
- Programmes de sélection en grandes cultures (maïs, blé, ...)

pour le pommier ... (culture irriguée)

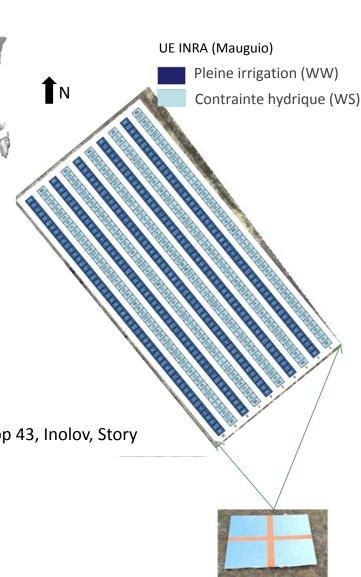
- → Variabilité inter- et intraspécifique de la tolérance à la sécheresse des *Malus* (Bassett et al., 2011, 2013)
- → Variabilité génétique de la régulation stomatique foliaire en réponse au VPD (Regnard et al., 2008, 2009)
- → Variation de la Water Use Efficiency entre cvs. (Massonnet *et al.,* 2007; Gonzalez-Talice *et al.,* 2012)
- → Données génétiques et génomiques sur pommier (équipe AFEF et collaborations)

Dispositif expérimental

Site d'étude : 2010 - 2013

UE INRA de Mauguio (43°36′ N, 3°58′ E)

Dispositif expérimental


- Starkrimson (STK) x Granny Smith (GS)
- 122 hydrides*4 répétitions (porte-greffe M9)
- Régimes hydriques différenciés en été : WS/WW
- → 2 répétition / génotype * régime hydrique

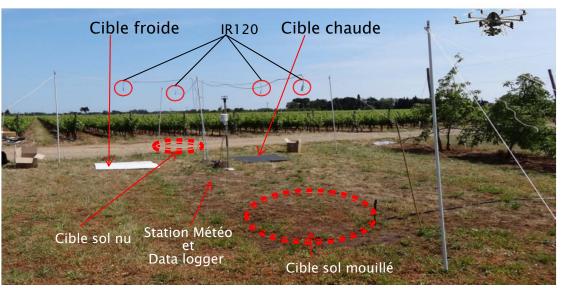
Sites d'étude 2014 - 2016

- Ctifl, Centre de Balandran, Bellegarde (30)
- CEHM, Centre de Marsillargues (34)

Dispositif expérimental

- 2 régimes hydriques : WW et WS (-50% apport)
- 3/4/5 répétitions d'arbres par variété et par régime hydrique
- 8 variétés : Coop 39, Cripps Pink, Dalinette, UEB 32642, Gradiyel, Coop 43, Inolov, Story

9 à 15 cibles géoréférencées aluminisées (pour géolocaliser les images)

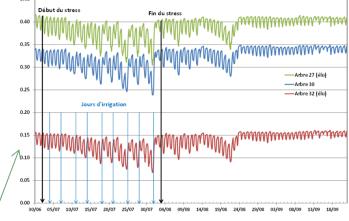

Programme drone : Données de Terrain (1)

Données physiques au sol simultanément au vol du drone

- <u>Températures</u>:
 - cibles « chaudes » et « froides »
 - 2 références sol nu et sol humide
- Données micro-météo :
 - température et humidité relative de l'air (Ta)
 - radiation solaire
 - vitesse du vent

Design expérimental de champ selon Gómez-Candón et al. (2016, in press)

Programme drone : Données de Terrain (2)



Données biophysiques de terrain

- Suivi de la plante
 - ☐ Potentiel hydrique de base (avant l'aube)
 - ☐ Potentiel hydrique de tige pendant la journée
 - ☐ Suivi du grossissement d'organes (branche ,fruit)
- Suivi de l'état hydrique du sol
 - ☐ Potentiel hydrique de sol : Sondes Watermark
 - ☐ Teneur en eau du sol : Sondes Sentek®
- Suivi des vol. d'eau distribués

Drone, caméra et appareils photo

- Drone Mikrokopter® Oktokopter (UMR TETIS)
- Caméra Thermoteknix[®] Miricle 307K (640*480)
- Appareils photo : RGB et NIR Sigma DP1 (2640*1760)

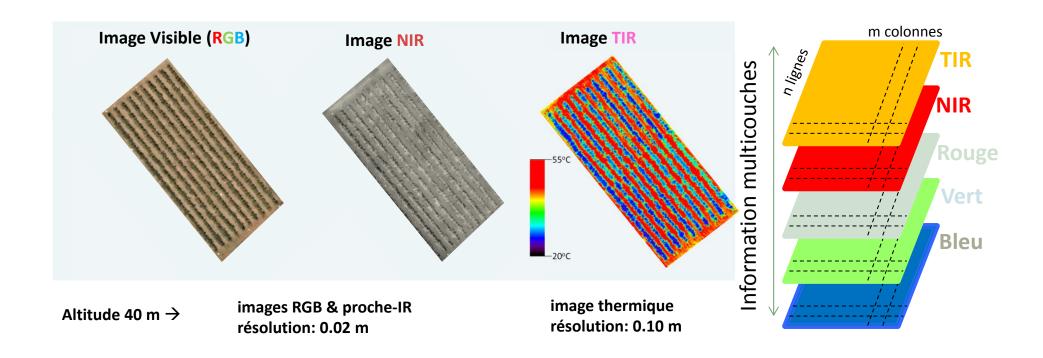
Visible: - bleu: ~450 nm

- vert: ~550 nm

- rouge: ~670 nm

Proche InfraRouge (PIR): ~745 nm

InfraRouge Thermique (IRT): 8-14 μm



Acquisition dans les bandes spectrales

Exemple d'images acquises :

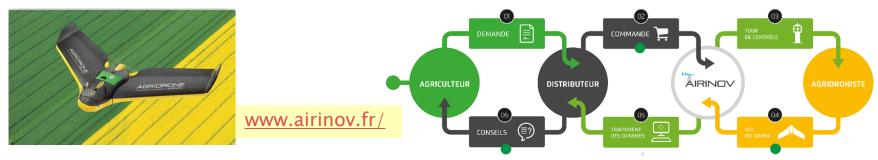
Chaîne de traitement des images DP1 Data 307K modified Thermal Image Near Infrared Visible Blue (B): ~450 nm Green (G): ~550 nm (NIR): ~745nm (TIR): 8-14µm Red (R): \sim 670 nm V Pre-processing Fuzzy images elimination Videoframes extraction Fuzzy images elimination Orthorectification and Orthorectification and Orthorectification and Mosaicking Mosaicking Mosaicking Geolocation Geolocation Geolocation TIR calibration Post-processing **Vegetation Indices** calculation Single tree isolation Water Deficit Index WDI W **Outputs** Single tree / Genotype / treatment Diurnal Ψ variations - R, G, B, NIR, TIR Diurnal and seasonal Ts-Ta variations NDVI, other vegetation indices Genotype behavior/progressive water stress Ts-Ta conditions - WDI Tree water status / Irrigation needs

- Etc.

8ème Apéro

016

Les drones en agriculture (Besqueut et al., 2015)


Technologie mature pour l'utilisation commerciale.

Maniabilité et fiabilité \rightarrow application en agriculture.

Utilisa° en grandes cultures (blé tendre et colza) pour diagnostic ou conseil de fertilisation N.

Début d'application en viticulture.

Aile volante doit se déplacer constamment pour voler (autonomie 45-60', couverture 20ha / vol)

Multirotor (4 à 8 hélices) réalisation de vols stationnaires, emport **₹** 3 kg

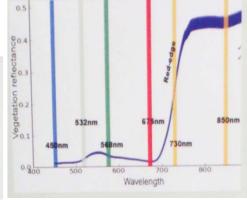
L'autonomie plus réduite (5 à 15mn) et fragilité plus grande.

Résolution imagerie drone : 5 à 30cm par pixel, selon altitude de vol et capteurs.

Volume de données généré :

Résolution	1cm/ pixel	10cm/pixel	25cm/pixel	100cm/pixel
Volume de données pour 10 ha	1400 Mo	28 Mo	5 Mo	0,5 Mo

Réglementation: Direction régionale de l'aviation civile, déclaration des vols, formation des télépilotes.



Indices à partir d'images multispectrales

Index	Indications Biologiques				Bandes S	pectrales				Référence
		Bleu	Vert 1	Vert 2	Rouge	RedEdge	N	IR	TIR	
		450nm	531nm	550nm	670nm	700nm	750nm	800nm	8-14µm	
NDVI	Structure et Chlorophylle				X			X		Rouse et al., 1974
										Rougean & Breon,
RDVI	idem				Χ			Χ		1995
MSR	idem				Χ			Χ		Chen, 1996
SAVI	Idem (soil adjusted)				Χ			X		Huete, 1988
MSAVI	idem				Χ			Χ		Qi et al. 1994
C A DV/I	Chlavanhodla	V			V			V		Kaufman & Tanre,
SARVI	Chlorophylle	Χ			X			X		1992
MCARI	Chlorophylle			X	X	X				Daughtry et al. 2000
MCARI_1	Chlorophylle			X	Χ			Χ		Daughtry et al. 2000
MCARI_2	GAI (et FIPAR)			X	Χ			Χ		Haboudane et al., 2004
TVI	Chlorophylle			Х	Х		X			Broge and Leblanc 2000
MTVI_1	Chlorophylle			Χ	Χ			Χ		Huete, 1988
MTVI_2	Chlorophylle			Χ	Χ			Χ		Huete, 1988
MTCI	Chlorophylle				Χ	Χ		Χ		Dash and Curran, 2004
PRI	Photosynthèse		Χ	Χ						Gamon et al., 1995
WDI	Stress hydrique				Χ			X	Χ	Moran et al., 1994

Applications possibles du drone en arboriculture fruitière

Observation	Type de capteur	Application directe	Application indirecte
Expression Végétative	Visible, Proche-IR	Repérage de zones de feuillage décoloré	Comptage automatique de pieds manquants
		Caractérisation de l'hétérogénéité du volume du feuillage	Diagnostic parcellaire : caractérisation du stress hydrique, carences azotées
		Repérage de zones de stress ou carences	Calcul de surfaces foliaires exposées
		Activité photosynthétique	Assimilation du carbone, bases du rendement
		Évaluation d'incidents climatiques	Porosité du feuillage, hauteur de végétation et croissance
Maladies	Hyperspectral, Proche-IR	Identification précoce de foyers de maladies	Protection phytosanitaire
Couleur du sol	Visible	Caractérisation de l'hétérogénéité de la couche supérieure du sol	Diagnostic parcellaire
		Repérage de zones humides	
Couverture du sol	Visible, Proche-IR	Évaluation de l'enherbement	Calcul des surfaces enherbées
Température	Thermique	Répartition des températures sur la parcelle	Estimation de la contrainte hydrique
Reliefs	Visible	Modélisation 3D de la parcelle	Calcul de pentes
			Calcul de surfaces réelles
			Calcul d'expositions
			Évaluation du ravinement

Elaboration d'après Besqueut et al. (2015 ; applications en viticulture)

Détection de maladies

Imagerie multi- or hyper-spectrale

Plant	Maladie	Méthodes Statistiques	Gamme spectral optimale
Blé	Fusarium	Step discrimination and discriminant analysis	568, 715nm (550, 605, 623, 660, 697 et 730nm)
Tomate	Mildiou	Minimum noise fraction transformation and spectral angle mappling-based classification	700-750nm, 750-930nm, 950-1030nm, et 1040- 1130nm
Blé	Rouille, carence des nutriments	Self-organizing map neural network, quadratic discriminant analysis	680, 725 et 750nm
Blé	Rouille	Régression	680, 725 et 750nm
Vigne (fruit)	Chancre	Analyses des composantes principales	553, 677, 718 et 858nm
Oignon	Sour skin	Analyse de l'image	1150-1280nm
Oranger	Blue mold, Browning rot	Différences en réflectance	540 et 680nm

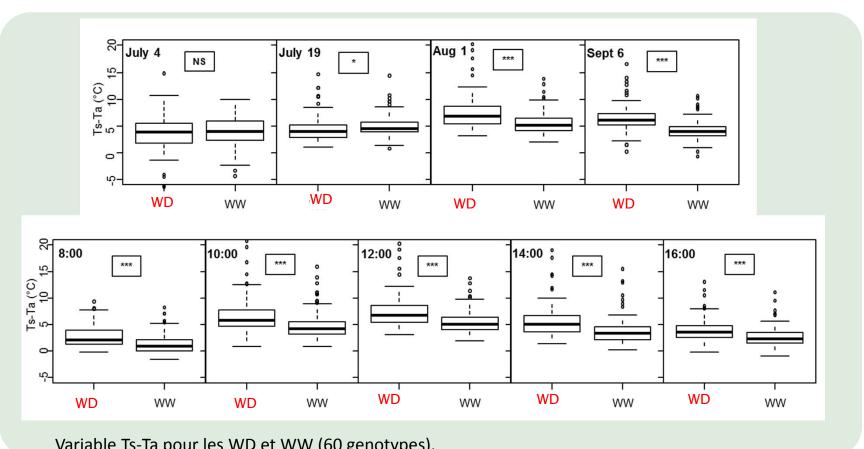
Revue par Sankaran et al., 2010

Problèmes: recherche d'une spécificité des bandes spectrales / maladie

Application récente: évaluation de dégâts de *Verticillium* en vergers d'olivier par imagerie hyperspectrale + thermique (vecteur = drone) (Calderón *et al.*, 2015)

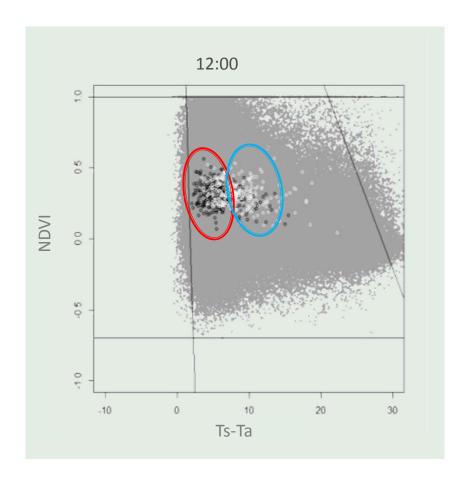
Plateforme Phenotic (Angers): détection de maladies (équipe Belin, Rousseau et al.)

Ts-Ta. 1er Août 2013 sur population de pommiers (Starkrimson * Granny Smith)

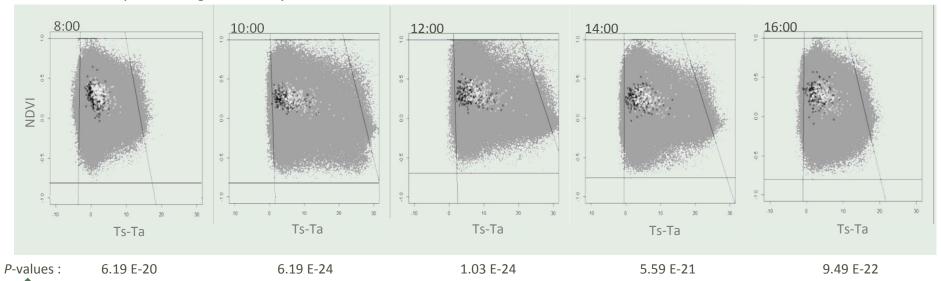

Fixed & random effects in the mixed linear model (minimizing the Bayesian AIC/BIC criteria). Variances of genotype and residual effect, and broad-sense heritability values (h²) are shown.

	Water regime (Fixed effect)	Genotype (Random effect)	Varia	ince	h ²
			Genotype	Residuals	
Ts-Ta_raw image	X	X	22.8%	77.2%	0.371
Ts-Ta_illuminated leaves	Χ	X	23.5%	76.5%	0.381
Ts-Ta_shaded leaves	X	X	23.1%	76.9%	0.376

Boxplots Ts-Ta (pour 4 dates de vol en 2013)



Graphes NDVI / Ts-Ta



Graphes NDVI / Ts-Ta

Water Deficit index (WDI). 1er Août 2013 sur population de pommiers (Starkrimson * Granny Smith)

Graphes présentant pour chaque arbre la valeur moyennée de la zone centrale : NDVI vs Ts-Ta (raw data). Ensemble de la parcelle : gris ; 122 hybrides : WW: noir , WS: blanc.

Effet stress significatif (selon ANOVA) ; effet génétique confirmé (modèle mixte) ; pas d'interaction

Drought effects and Genotypic variations

Water treatment and Genotype effects (two-way ANOVA)

		Water tre effe	Genoty	pe effect	
<u>Date</u>	<u>Hour</u>	<u>Tc-Ta</u>	<u>WDI</u>	<u>Ts-Ta</u>	<u>WDI</u>
4 th July	12:00	NS	*	NS	NS
- 37					
19 th July	12:00	*	***	NS	NS
1 st August	08:00	***	***	NS	NS
	10:00	***	***	NS	NS
	12:00	***	***	**	**
	14:00	***	***	*	*
	16:00	***	***	NS	NS
6th Sept.	12:00	***	***	NS	NS
o sept.	12.00			143	INO

Water treatment (n_w =2) and genotype (n_g =60)

Conclusion

Caractérisation d'arbres fruitiers au champ : Phénotypage ou Diagnostic

- * Approches méthodologiques
 - * Phénotypage : Réponse variétale au stress hydrique par imagerie thermique
 - * Diagnostic : monitoring stress biotiques ou abiotiques : qq. indices de télédétection disponibles
 - * Application professionnelle : suivi du stress hydrique sur champ ou placettes
 - * Définition de placettes; irrigation de précision, si des règles de pilotage sont précisées
 - * Défi : améliorer le débit de traitement des images et leur traitement
- * En cours:
 - * Application en stations professionnelles (projet Casdar Aliage-*fruits* 2014-17): comportement de nouvelles variétés :
 - * proof of the concept
 - * évaluation du rapport : coût / efficience
- * En projet : screening d'une collection de diversité pommiers, phénotypage de la réponse à la contrainte hydrique et autres traits :
 - * Dynamique de feuillaison (et floraison) : aspects temporels (délai de revisite ?)
 - * Fonctionnement du couvert : état du photosystème II en cas de stress, azote foliaire, etc.

Merci de votre attention

Parcelle de phénotypage pommiers, INRA Melgueil (Mauguio), avril 2011 Photo : N. Virlet

Principales références citées

Bassett, C. L. (2013). Water use and drought response in cultivated and wild Apples. Abiotic stress – plant responses and applications in agriculture. K. Vahdati, L. Charles, InTech: 249–275.

Berni, J. A. J., P. Zarco-Tejada, et al. (2009). Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing 47(3): 722-738.

Besqueut G., Pichon L., Tisseyre B. (2015). Les drones en viticulture : quels enjeux, quels services. Revue des Œnologues, Octobre 2015, 3p.

Fiorani, F. and U. Schurr (2013). Future scenarios for plant phenotyping. Annual Review of Plant Biology 64: 267-291.

Gitelson, A. A., Y. J. Kaufman, et al. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment 80: 76-87. Gómez-Candón D., N. Virlet, S. Labbé, A. Jolivot, J.L. Regnard (2016, in press). Field phenotyping of water stress at tree scale by UAV-sensed imagery:

new insights for thermal acquisition and calibration. Precision Agriculture DOI 10.1007/s11119-016-9449-6

Gonzalez-Talice, J., J. A. Yuri, et al. (2012). Water use in three apple cultivars from the second season to sixth season in a drainage lysimeter. Scientia Horticulturae 146: 131-136.

Grant, O. M., M. M. Chaves, et al. (2006). Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions. Physiologia Plantarum 127(3): 507-518.

Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany 55(407): 2427-2436.

Jones, H. G., R. Serraj, et al. (2009). Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology 36(10/11): 978–989.

Massonnet, C., E. Costes, et al. (2007). Stomatal regulation of photosynthesis in apple leaves: Evidence for different water-use strategies between two cultivars. Annals of Botany 100(6): 1347-1356.

McDowell, N. G. (2011). Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiology 155(3): 1051–1059.

Moran, M. S., T. R. Clarke, et al. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index Remote Sensing of Environment 49(3): 246-263

Peñuelas, J., J. A. Gamon, et al. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment 48(2): 135-146.

Prashar, A. and H. G. Jones (2014). Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping. Agronomy 4(3).397-417.

Regnard, J. L., M. Ducrey, et al. (2008). Phenotyping apple progeny for ecophysiological traits: how and what for? Acta Horticulturae 772: 151-158.

Regnard, J. L., V. Segura, et al. (2009). QTL analysis for leaf gas exchange in an apple progeny grown under atmospheric constraints. Acta Horticulturae 814: 369–374.

Sankarana, S., A. Mishraa, et al. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agric. 72: 1-13.

Tardieu, F. and T. Simonneau (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany 49(Special issue): 419–432.

Virlet N., Lebourgeois, V. et al., 2014. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints. Journal of Experimental Botany 65(18): 5429-5442.

Virlet, N., Costes, E., et al. (2015). Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit. Journal of Experimental Botany 66(18): 5453-5465

White, J. W., P. Andrade-Sanchez, et al. (2012). Field-based phenomics for plant genetics research. Field Crops Research 133: 101-112.

Zarco-Tejada, P. J., J. A. J. Berni, et al. (2009). Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sensing of Environment 113(6): 1262–1275.

Water Deficit Index (Moran et al. 1994)

WDI =
$$\frac{(T_s - T_a) - (T_s - T_a)_{min}}{(T_s - T_a)_{max} - (T_s - T_a)_{min}ET_{max}}$$

T_a: Température de l'air

T_s: Température de surface

Points extrêmes définis par les équations du bilan d'énergie :

$$\lambda E = \frac{\Delta (R_n - G) + \frac{\rho C_p}{r_a} VPD}{\Delta + \gamma (1 + \frac{r_c}{r_a})}$$

-- 1-3: borne minimum, $(T_s-T_a)_{min}$

-- 2-4: borne maximum, $(T_s-T_a)_{max}$

$$WDI = \frac{AC}{AB}$$

$$WDI' = \frac{A'C'}{A'B'}$$

$$0 < WDI < 1$$

Couverts transpirants Couverts non-transpirants

1. Végétation développée irriguée 0.4 2. Végétation développée 0.3 stressée 0.2 0.0 3. Sol nu irrigué 4. Sol nu sec 0 5 25 15 10 20 $T_s - T_s$

Forme trapézoïdale du nuage de pixels entre T_s-T_a et NDVI