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@ Inference problems from spatial data
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© The GLMM approach

© Effective software for inference in spatial GLMMs

@ Perspectives
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Inference problems from spatial data

Typical question: does a genetic marker affect a trait? Hancock et al.
Adaptation to climate across the Arabidopsis thaliana genome. Science (2011)

Fournier-Level et al. A map of local adaptation in Arabidopsis thaliana. Science (2011)

Fig. 3. Geographic distribution probability
of the survival-associated alleles located
within the SAG21 gene (left) and the CHR8
gene (right). Probabilities were calculated
with MaxEnt models as described (16). For
both genes, the minor allele is distributed
at the spedes range margin following a par-
ticular climate space and shows signs of
recent positive selection. They correspond to
the best candidate genes for local adapta-
tion reported in this study.
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Inference problems from spatial data

Typical question: does environment affect a species presence/abundance?

Diggle et al. (2007)
Annals of Tropical Medicine & Parasitology 101 : 499-509 (2007) MODELLING Loa RISK 503
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FIG. 2. Point estimates of the prevalence of Loa loa microfilaraemia, over-laid with the prevalences observed in

field studies.
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Inference problems from spatial data

Typical question: does environment affect a species presence/abundance?

Diggle et al. develop MCMC algorithms to fit a binomial GLMM to these
data.

53
g
2
g
2
B
£
&b
& -
Jas|
B T T
0 500 1000 1500
Elevation (m)
0
s | ® f58%
S 008, 008,08
E gg i EQE 8 00
S 2
> 80
15 o o
8.3 o ° o§°° o°s°o
B ot N
:01“—4— o°°° %
S-o o 0.08.° °
T t t t T T
0.65 070 075 080 085 090
Maximum NVDI

Francois Rousset spaMM Dec. 2016 3/19



utline

@ Motivations: spatial data and smoothers
@ Inference problems from spatial data
@ Smoothers
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The mirage of partial Mantel tests

“takes into account the spatial structure in the data”

Criticized (Raufaste et Rousset 2001 Evolution... Guillot et Rousset 2013
Meth. Ecol. Evol.) and defended.
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The mirage of partial Mantel tests

“takes into account the spatial structure in the data”

Criticized (Raufaste et Rousset 2001 Evolution... Guillot et Rousset 2013
Meth. Ecol. Evol.) and defended.

The poverty of arguments for partial Mantel tests:

e Cushman & Landguth, (2010, Molecular Ecology) “Our results
demonstrate that partial Mantel tests in a causal modelling
framework do not suffer from high Type | error rates, in marked
contrast to simple Mantel tests.”
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The mirage of partial Mantel tests

“takes into account the spatial structure in the data”

Criticized (Raufaste et Rousset 2001 Evolution... Guillot et Rousset 2013
Meth. Ecol. Evol.) and defended.

The poverty of arguments for partial Mantel tests:

e Cushman & Landguth, (2010, Molecular Ecology) “Our results
demonstrate that partial Mantel tests in a causal modelling
framework do not suffer from high Type | error rates, in marked
contrast to simple Mantel tests.”

... there is no evaluation of type | error rates in that paper.
@ Legendre and Fortin (2010, Mol. Ecol. Resources.): claim to have

“pivotal” statistics
. results of R & R 2001 imply that this is false.
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The mirage of partial Mantel tests

Legendre and Fortin further discuss 4 variants of PM tests.
» Example of their performance in simulations (Guillot & R., 2013)
@ Simulations under null hypothesis: no effect of some environmental
variable
@ Spatial sampling design of the filariasis study
@ Spatial autocorrelation parameters as estimated by Diggle et al. on
the same data
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The mirage of partial Mantel tests

Legendre and Fortin further discuss 4 variants of PM tests.
» Example of their performance in simulations (Guillot & R., 2013)
@ Simulations under null hypothesis: no effect of some environmental
variable
@ Spatial sampling design of the filariasis study
@ Spatial autocorrelation parameters as estimated by Diggle et al. on
the same data

empirical CDF of p values
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Specifically “Kriging”
@ Inference of likelihood surfaces in some population genetic inference
problems (Migraine software)

@ "Summary likelihood” alternative to Approximate Bayesian
computation (ABC)
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© The GLMM approach

Frangois Rousset spaMM Dec. 2016 8 /19



Elements of a spatial GLMM

LM: y; = xuBk+ei
P
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Elements of a spatial GLMM

LM: y=XB8+c¢€
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Elements of a spatial GLMM

LM: y=XB8+e¢€

Linear regression on 3 observations:

1 x1
pi=atxb=XBfrX=1 x and,@:(Z)
1 x3
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Elements of a spatial GLMM

LM: y=XB8+e¢€

LMM: y=Xg8+ \Z)I_, +e
Random effect
Random effect Zv: unknown v with given distribution, here independent
Gaussian variables, so that correlations among elements of Zv are given by
correlation matrix ZZ.
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Elements of a spatial GLMM

LM: y=XB8+¢€
LMM: y=XB8+2v+e

Four observations in two blocks:

1 0
v— i _ ! and correlation
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Elements of a spatial GLMM

LM: y=XB8+e¢€
LMM: y=XB8+2v+e

CLM: y=f(XB)+ _e_

non-Gaussian
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Elements of a spatial GLMM

LM: y=XB8+e¢€
LMM: y=XB8+2v+e
GLM: y=f(X3)+e

Binomial GLM with logit link (f~1):

1—|—e’(5jL ~

Binomial

observed frequency =
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Elements of a spatial GLMM

Francois Rousset

LM:
LMM:
GLM:

GLMM:

y=XB+e€
y=XB8+2v+e
y="Ff(X3)+e

y=f(XB+2Zv)+e
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Elements of a spatial GLMM

LM: y=XGB8+¢€
LMM: y=XB+2v+e
GLM: y="f(XB)+e
GLMM: y=f(XB8+ 2Zv)+e¢

spatial GLMM: Elements of the correlation matrix ZZ" are larger when
the observations are closer in space.

Parameters: 3
variance(s) Var(v;)
(variance(s) Var(e;))

parameters defining the correlation matrix ZZ .
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Mixed models as smoothers

Prediction by mixed model:

Diggle et al. (2007
g oL oo 101 : 499-509 (2007) MODELLING Loa RISK 503

y = f (X ﬁ + Zv) “+€ Annals of Tropical Medicine & Parasitology
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Correlation models for spatial data

Autoregressive models

So-called geostatistical approach
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Correlation models for spatial data

Autoregressive models
e Widely discussed (e.g. in econometry) because relatively easy to fit
@ Derived from time series; can describe pedigree relationships
@ Interpretation may be difficult for purely spatial processes
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SAR 1st order neighbor correlations
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Wall (2004) J. Stat. Planning & Inference
@ Do not provide smoothers
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Correlation models for spatial data

Autoregressive models
o Widely discussed (e.g. in econometry) because relatively easy to fit
@ Derived from time series; can describe pedigree relationships
@ Interpretation may be difficult for purely spatial processes

@ Do not provide smoothers

So-called geostatistical approach

o Correlations are function of Euclidean (or of
geodesic) distances

Correlation

@ Most useful is the so-called Matérn family of
functions, which includes the exponential and
. 2
squared exponential (e and e*).

distance
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Correlation models for spatial data

Autoregressive models
o Widely discussed (e.g. in econometry) because relatively easy to fit
@ Derived from time series; can describe pedigree relationships
@ Interpretation may be difficult for purely spatial processes

@ Do not provide smoothers

So-called geostatistical approach

o Correlations are function of Euclidean (or of
geodesic) distances

Correlation

@ Most useful is the so-called Matérn family of
functions, which includes the exponential and
. 2
squared exponential (e and e*).

@ Scale parameter p (x = pd) or vector of T
parameters (x = > 4. p;id?).
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Approaches for fitting spatial GLMMs

Likelihood is an integral over the distribution of the random effects,
usually a high-dimensional integral with no explicit analytical expression.

Numerical integration often not feasible
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Approaches for fitting spatial GLMMs

Likelihood is an integral over the distribution of the random effects,
usually a high-dimensional integral with no explicit analytical expression.

Numerical integration often not feasible

MCMC

@ “In general, a good choice of transition kernel is problem-specific, and
in our experience involves considerable trial-and-error experimentation
to achieve good results” (Diggle and Ribeiro, Model-based
geostatistics, Springer, 2007)

@ Often involve prior distributions, with the resulting problems for
defining a “good” prior and validating the methods

e Distinct MC methods for binary (probit) models.
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Approaches for fitting spatial GLMMs

Likelihood is an integral over the distribution of the random effects,
usually a high-dimensional integral with no explicit analytical expression.

Numerical integration often not feasible
MCMC
Analytical approximations of the integrals (Laplace approximations, etc.)

1me4, glmmPQL, Lee and Nelder's Hierarchical GLM approach
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Approaches for fitting spatial GLMMs

Likelihood is an integral over the distribution of the random effects,
usually a high-dimensional integral with no explicit analytical expression.

Numerical integration often not feasible

MCMC

Analytical approximations of the integrals (Laplace approximations, etc.)
1me4, glmmPQL, Lee and Nelder's Hierarchical GLM approach

In practice, software failures and/or impenetrability and/or undocumented
tricks advocated in the literature (1mer, glmmPQL)
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Fitting the prevalence data with geoRglm (Christensen & Diggle)

Something easier and easily repeatable?
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Outline

© Effective software for inference in spatial GLMMs
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spaMM R package for spatial Mixed Models

Models handled:
@ Those previously described

@ Basic set of GLMMs (Gaussian, Binomial, Poisson, Gamma) and link
functions (identity, log, inverse, logit, probit, complementary log-log);
+ negative binomial, Conway-Maxwell-Poisson

several random effects, non-spatial
@ Some non-Gaussian distributions of random effects

@ Heteroscedastic models

Cons: First implementation not fast

Validation: Type | error < coverage of likelihood ratio confidence intervals
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The filaria prevalence data revisited
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The filaria prevalence data revisited

corrHLfit (formula=cbind(npos,ntot-npos) “elevi+elev2+elev3+elev4d
+maxNDVI1+seNDVI+Matern(1|long+lat)),
family=binomial() ,data=Loaloa)
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The filaria prevalence data revisited

corrHLfit (formula=cbind(npos,ntot-npos) “elevi+elev2+elev3+elev4d
+maxNDVI1+seNDVI+Matern(1|long+lat)),
family=binomial() ,data=Loaloa)

Inferred prevalence, North Cameroon
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Comparison with a recommended alternative

A certain usage of glmmPQL which “produces the identical results as an

official spatial GLMM in SAS (proc glimmix) and can hence be trusted.”
(Dormann et al., 2007, Ecography, Appendix).
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Comparison with a recommended alternative

A certain usage of glmmPQL which “produces the identical results as an
official spatial GLMM in SAS (proc glimmix) and can hence be trusted.”
(Dormann et al., 2007, Ecography, Appendix).

Prevalence example

1.0

— glmmPQL
PQL/L
i — ML

0.8

0.6
I

Empirical CDF of p-values
0.4

0.2
I

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0
p-value
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Applications and perspectives

@ “"Summary likelihood” alternative to Approximate Bayesian
computation (ABC): Infusion package

@ Inference of origin of samples using isotopes: IsoriX package (A.
Courtiol)

o Efficient implementation of autoregressive mixed models

@ Monte Carlo EM techniques for binary probit models
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Inference of origin of samples

Myotis bechteinii. Photo (C) Jan Svetlik
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Inference of origin of samples

“Myotis bechteinii. Photo (C) Jan Svetlik

Variation in deuterium in rain samples

mean 5D,

Latitude

20°E 40°E

Longitude
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Inference of origin of samples

“Myotis bechteinii. Photo (C) Jan Svetlik

Calibration of deuterium in bats vs. deuterium in rain

Francois Rousset

Isotopic value in the organisms
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Inference of origin of samples

¥ EMyotis bechteinii. Photo (C) Jan Svetlik

Assignation by testing each location as possible origin

Latitude

Longitude
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